Global Existence and Analyticity for the 2D Kuramoto–Sivashinsky Equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Analyticity on the Global Attractor for the KuramotoSivashinsky Equation

For the Kuramoto Sivashinsky equation with L-periodic boundary conditions we show that the radius of space analyticity on the global attractor is lowersemicontinuous function at the stationary solutions, and thereby deduce the existence of a neighborhood in the global attractor of the set of all stationary solutions in which the radius of analyticity is independent of the bifurcation parameter ...

متن کامل

The existence of global attractor for a Cahn-Hilliard/Allen-Cahn‎ ‎equation

In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0

متن کامل

Global Existence of Weak Solutions for the Burgers-Hilbert Equation

This paper establishes the global existence of weak solutions to the Burgers-Hilbert equation, for general initial data in L(IR). For positive times, the solution lies in L2∩L∞. A partial uniqueness result is proved for spatially periodic solutions, as long as the total variation remains locally bounded.

متن کامل

Global Existence for the Minimal Surface Equation on R

In a 2004 paper, Lindblad demonstrated that the minimal surface equation on R1,1 describing graphical timelike minimal surfaces embedded in R 1,2 enjoy small data global existence for compactly supported initial data, using Christodoulou’s conformal method. Here we give a different, geometric proof of the same fact, which exposes more clearly the inherent null structure of the equations, and wh...

متن کامل

Local and Global Existence for an Aggregation Equation

The purpose of this work is to develop a satisfactory existence theory for a general class of aggregation equations. An aggregation equation is a non-linear, non-local partial differential equation that is a regularization of a backward diffusion process. The non-locality arises via convolution with a potential. Depending on how regular the potential is, we prove either local or global existenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Dynamics and Differential Equations

سال: 2018

ISSN: 1040-7294,1572-9222

DOI: 10.1007/s10884-018-9656-0